Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Passive Liquid Flow Can Aid Nanotechnology Development, Study Suggests

Wednesday, September 21, 2016, By Elizabeth Droge-Young
Share

A new study, inspired by water’s movement from roots to leaves in tall trees, shows that a certain kind of passive liquid flow, where liquids naturally move in response to surface atomic interactions instead of being driven by external forces like pumps, is remarkably strong. By virtually modeling the way atoms interact at a solid surface, College of Engineering and Computer Science researchers suggest that passive liquid flow could serve as a highly efficient coolant-delivery mechanism without the need for pumps. The results, published in Langmuir,  also have implications for the development of new nanoscale technology.

Leaf with computer chip

By virtually modeling the way atoms interact at a solid surface, College of Engineering and Computer Science researchers suggest that passive liquid flow could serve as a highly efficient coolant-delivery mechanism without the need for pumps.

“We were surprised at the strength of the passive liquid flow we obtained, which showed that it can used to remove a large amount of heat over a very small surface area,” says Shalabh Maroo, assistant professor of mechanical and aerospace engineering and senior author on the new study.

Surface-driven passive liquid flow is different from the more widely known capillary action. Capillary action, where liquid is seemingly sucked up into very narrow spaces, is primarily governed by vapor-liquid interactions and has been studied extensively. Capillary action can be seen in man-made and natural systems, including water wicking up a piece of fabric or paper.

Alternately, surface-driven flow arises from molecular interactions between a solid surface and the liquid. The current research found that surface-driven flow is much stronger than capillary action. “It presents an opportunity to design technological systems that can benefit from these stronger flows,” Maroo says of the study’s practical applications.

In the current study, Maroo and then-Syracuse Ph.D. student Sumith YD, lead author of the study, computer simulated interacting atoms of liquids and solid surfaces to better understand how passive flow works at an atomic level. (YD is now a post-doc at the University of Georgia.) “These simulations provide valuable insight into the process, and can help us in designing experiments to realize heat removal devices for cooling electronics,” Maroo says.

As electronics have gotten smaller, the problem of cooling next-generation technology has become more difficult, Maroo says. For new devices, like integrated circuit chips, transistors and concentrated photovoltaic devices, heat needs to be dissipated at a greater amount per surface area. For example, a household iron generates roughly 5 watts per squared centimeter of heat. Next-generation devices can create up to 1,000 watts of heat over the same area.

Building off this research, Maroo aims for creation of cooling devices that can dissipate the massive amount of concentrated heat generated by small-scale devices through surface-driven passive flow. Liquid would continually evaporate at the hot surfaces, while simultaneously being continually drawn to the areas requiring cooling by the passive flow mechanism.

“Advancements in high heat flux removal through passive flow techniques are critical for developing next-generation energy and electronic devices,” Maroo says. “Nanoscale evaporation heat transfer, coupled with surface-driven passive flow, can combine high heat flux removal with passive liquid supply; hence, pursuing this potentially disruptive technology is of critical importance.”

  • Author

Elizabeth Droge-Young

  • Recent
  • Students Engaged in Research and Assessment
    Tuesday, May 20, 2025, By News Staff
  • Syracuse Views Summer 2025
    Monday, May 19, 2025, By News Staff
  • Awards Recognize Success of Assessment Through Engagement and Collaboration
    Monday, May 19, 2025, By News Staff
  • Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering
    Sunday, May 18, 2025, By Alex Dunbar
  • ’Cuse Collections Items Donated to Community Through Local Organizations
    Sunday, May 18, 2025, By Lydia Krayenhagen

More In STEM

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Subscribe to SU Today

If you need help with your subscription, contact [email protected].

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.
OSZAR »